Secondo Zenone di Elea, filosofo greco presocratico del quinto secolo avanti Cristo, Usain Bolt, ovvero l’uomo più veloce del globo terracqueo, non raggiungerà mai in una gara ad inseguimento Palmira, la mia viziatissima tartaruga da salotto.
Vediamo di capire il ragionamento che è passato alla storia come il paradosso di Zenone.
Supponiamo che il famoso velocista giamaicano corra alla velocità di 36 km/h (ovvero ogni secondo percorre 10 metri, sic!) cercando di raggiungere la tartaruga Palmira, che si trova 100 metri più avanti e che procede alla modestissima velocità di 0,36 km/h (cioè 1 metro ogni 10 secondi).
Pochi e semplici calcoli dimostrano che dopo 10 secondi Usain ha percorso i 100 metri che lo separavano inizialmente da Palmira, la quale però nel frattempo è avanzata di 1 metro. Quindi dopo 10 secondi di inseguimento Palmira precede ancora di 1 metro il campione olimpico; distanza che egli brucia in appena 1 decimo di secondo. Però, lenta e inesorabile come solo lei sa essere, Palmira nel frattempo avanza di 1 centimetro ancora. La conclusione è che dopo 10,1 secondi la tartaruga precede il piè veloce Bolt di 1 centimetro. Questo distacco viene coperto dal portentoso velocista in appena 1 millesimo di secondo, un vero battito di ciglia… Eppure, per quanto avanzi a velocità 100 volte superiore, la tartaruga riesce a sopravanzarlo, anche se solo di 1 decimo di millimetro.
Non sto qui a tediarvi continuando il ragionamento che si può ripetere all’infinito, con il risultato che la lenta tartaruga riesce sempre a sopravanzare l’uomo più veloce della Terra! Anche se il vantaggio è sempre più piccolo e risicato, il petto del velocissimo corridore caraibico rimane dietro al testone imperturbabile di Palmira.
I fatti però ci dicono che così non è; Usain Bolt raggiunge e sopravanza facilmente la tartaruga Palmira. Su quale artificio concettuale, allora, fa leva il ragionamento? Semplice: quello di considerare intervalli di tempo sempre più brevi, gli intervalli di tempo necessari al veloce bipede per percorre il distacco che lo separa ancora dal lento rettile. E siccome il distacco, pur riducendosi continuamente, rimane sempre finito ne consegue che il veloce corridore non potrà mai superare la lenta Palmira.
Quando studiavo filosofia al liceo mi liquidarono il discorso dicendomi che il paradosso è stato risolto dal calcolo infinitesimale… ed io non capivo! Quando ho studiato il calcolo infinitesimale ho scoperto che si possono sommare infiniti numeri (sempre più piccoli) ed ottenere un risultato finito; si chiamano serie convergenti. Eccone una: “Un numero infinito di matematici entra in un bar. Il primo ordina una birra. Il secondo ordina mezza birra. Il terzo ordina un quarto di birra. Il barista dice: “siete degli idioti”, e serve due birre.”
Ma si sa che i numeri non piacciono a tutti… e spesso con i numeri si perde il senso fisico delle cose. E siccome sono un fisico, preferisco cercare altre spiegazioni.
Il punto debole del ragionamento di Zenone sta in un concetto modernissimo della fisica quantistica: il tempo non si può suddividere in intervalli piccoli a piacere! Esiste un limite oltre il quale un già piccolo intervallo di tempo non si può più ridurre, ed è in quel momento che il veloce Usain supera la lenta Palmira!
Si chiama tempo di Planck e corrisponde al tempo impiegato dalla luce a percorrere la distanza più piccola che si possa concepire, il pacchetto più piccolo di spazio: la lunghezza di Planck. Il tempo di Planck è il pacchetto temporale più breve che si possa misurare e corrisponde a 10-43 secondi: un numero veramente piccolo.
E’ da quell’istante che è iniziato il tutto: 10-43 secondi dopo il Big-Bang si può far risalire la nascita dello spazio-tempo e con esso dell’Universo.
4 commenti:
Ciao, Angelo. Bellissimo post. Complimenti!
Posso trasportarlo su Scientificando citando te e antares?
Annarita
Certamente Annarita!
Grazie mille, Angelo.
Qui l'articolo su Scientificando.
A presto.
Annarita
ps: ogni tanto, fatevi sentire sul mio blog!
sono sbalordito!
è incredibile come dietro al più semplice dei superamenti si trovi un fenomeno così complesso.
c
Complimenti alla tua tartaruga palmira.
Davide
Posta un commento